小例子
学习资料:
要点 ¶
这一次我们会用 tabular Q-learning 的方法实现一个小例子, 例子的环境是一个一维世界, 在世界的右边有宝藏, 探索者只要得到宝藏尝到了甜头, 然后以后就记住了得到宝藏的方法, 这就是他用强化学习所学习到的行为.
-o---T
# T 就是宝藏的位置, o 是探索者的位置
Q-learning 是一种记录行为值 (Q value) 的方法, 每种在一定状态的行为都会有一个值 Q(s, a)
, 就是说 行为 a
在 s
状态的值是 Q(s, a)
.
s
在上面的探索者游戏中, 就是 o
所在的地点了. 而每一个地点探索者都能做出两个行为 left/right
, 这就是探索者的所有可行的 a
啦.
如果在某个地点 s1
, 探索者计算了他能有的两个行为, a1/a2=left/right
, 计算结果是 Q(s1, a1) > Q(s1, a2)
, 那么探索者就会选择 left
这个行为.
这就是 Q learning 的行为选择简单规则.
当然我们还会细说更具体的规则. 在之后的教程中, 我们会更加详细得讲解 RL 中的各种方法, 下面的内容, 大家大概看看就行, 有个大概的 RL 概念就行, 知道 RL 的一些关键步骤就行, 这节的算法不用仔细研究.
预设值 ¶
这一次需要的模块和参数设置:
import numpy as np
import pandas as pd
import time
N_STATES = 6 # 1维世界的宽度
ACTIONS = ['left', 'right'] # 探索者的可用动作
EPSILON = 0.9 # 贪婪度 greedy
ALPHA = 0.1 # 学习率
GAMMA = 0.9 # 奖励递减值
MAX_EPISODES = 13 # 最大回合数
FRESH_TIME = 0.3 # 移动间隔时间
Q 表 ¶
对于 tabular Q learning, 我们必须将所有的 Q values (行为值) 放在 q_table
中, 更新 q_table
也是在更新他的行为准则.
q_table
的 index 是所有对应的 state
(探索者位置), columns 是对应的 action
(探索者行为).
def build_q_table(n_states, actions):
table = pd.DataFrame(
np.zeros((n_states, len(actions))), # q_table 全 0 初始
columns=actions, # columns 对应的是行为名称
)
return table
# q_table:
"""
left right
0 0.0 0.0
1 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 0.0
5 0.0 0.0
"""
定义动作 ¶
接着定义探索者是如何挑选行为的. 这是我们引入 epsilon greedy
的概念. 因为在初始阶段, 随机的探索环境,
往往比固定的行为模式要好, 所以这也是累积经验的阶段, 我们希望探索者不会那么贪婪(greedy). 所以 EPSILON
就是用来控制贪婪程度的值.
EPSILON
可以随着探索时间不断提升(越来越贪婪), 不过在这个例子中, 我们就固定成 EPSILON = 0.9
, 90% 的时间是选择最优策略,
10% 的时间来探索.
# 在某个 state 地点, 选择行为
def choose_action(state, q_table):
state_actions = q_table.iloc[state, :] # 选出这个 state 的所有 action 值
if (np.random.uniform() > EPSILON) or (state_actions.all() == 0): # 非贪婪 or 或者这个 state 还没有探索过
action_name = np.random.choice(ACTIONS)
else:
action_name = state_actions.argmax() # 贪婪模式
return action_name
环境反馈 S_, R ¶
做出行为后, 环境也要给我们的行为一个反馈, 反馈出下个 state (S_) 和 在上个 state (S) 做出 action (A) 所得到的 reward (R).
这里定义的规则就是, 只有当 o
移动到了 T
, 探索者才会得到唯一的一个奖励, 奖励值 R=1, 其他情况都没有奖励.
def get_env_feedback(S, A):
# This is how agent will interact with the environment
if A == 'right': # move right
if S == N_STATES - 2: # terminate
S_ = 'terminal'
R = 1
else:
S_ = S + 1
R = 0
else: # move left
R = 0
if S == 0:
S_ = S # reach the wall
else:
S_ = S - 1
return S_, R
环境更新 ¶
接下来就是环境的更新了, 不用细看.
def update_env(S, episode, step_counter):
# This is how environment be updated
env_list = ['-']*(N_STATES-1) + ['T'] # '---------T' our environment
if S == 'terminal':
interaction = 'Episode %s: total_steps = %s' % (episode+1, step_counter)
print('\r{}'.format(interaction), end='')
time.sleep(2)
print('\r ', end='')
else:
env_list[S] = 'o'
interaction = ''.join(env_list)
print('\r{}'.format(interaction), end='')
time.sleep(FRESH_TIME)
强化学习主循环 ¶
最重要的地方就在这里. 你定义的 RL 方法都在这里体现. 在之后的教程中, 我们会更加详细得讲解 RL 中的各种方法, 下面的内容, 大家大概看看就行, 这节内容不用仔细研究.
def rl():
q_table = build_q_table(N_STATES, ACTIONS) # 初始 q table
for episode in range(MAX_EPISODES): # 回合
step_counter = 0
S = 0 # 回合初始位置
is_terminated = False # 是否回合结束
update_env(S, episode, step_counter) # 环境更新
while not is_terminated:
A = choose_action(S, q_table) # 选行为
S_, R = get_env_feedback(S, A) # 实施行为并得到环境的反馈
q_predict = q_table.loc[S, A] # 估算的(状态-行为)值
if S_ != 'terminal':
q_target = R + GAMMA * q_table.iloc[S_, :].max() # 实际的(状态-行为)值 (回合没结束)
else:
q_target = R # 实际的(状态-行为)值 (回合结束)
is_terminated = True # terminate this episode
q_table.loc[S, A] += ALPHA * (q_target - q_predict) # q_table 更新
S = S_ # 探索者移动到下一个 state
update_env(S, episode, step_counter+1) # 环境更新
step_counter += 1
return q_table
写好所有的评估和更新准则后, 我们就能开始训练了, 把探索者丢到环境中, 让它自己去玩吧.
if __name__ == "__main__":
q_table = rl()
print('\r\nQ-table:\n')
print(q_table)
如果想一次性看到全部代码, 请去我的 Github
分享到:
如果你觉得这篇文章或视频对你的学习很有帮助, 请你也分享它, 让它能再次帮助到更多的需要学习的人.
UnityTutorial没有正式的经济来源, 如果你也想支持 UnityTutorial 并看到更好的教学内容, 赞助他一点点, 作为鼓励他继续开源的动力.