视频源:

DQN 神经网络 (Tensorflow)

作者: UnityTutorial 编辑: UnityTutorial 2017-02-26

学习资料:

要点

接着上节内容, 这节我们使用 Tensorflow (如果还不了解 Tensorflow, 这里去往 经典的 Tensorflow 视频教程) 来搭建 DQN 当中的神经网络部分 (用来预测 Q 值).

两个神经网络

为了使用 Tensorflow 来实现 DQN, 比较推荐的方式是搭建两个神经网络, target_net 用于预测 q_target 值, 他不会及时更新参数. eval_net 用于预测 q_eval, 这个神经网络拥有最新的神经网络参数. 不过这两个神经网络结构是完全一样的, 只是里面的参数不一样. 在这个短视频里, 能找到我们为什么要建立两个不同参数的神经网络.

DQN 神经网络 (Tensorflow)

神经网络结构

因为 DQN 的结构相比之前所讲的内容都不一样, 所以我们不使用继承来实现这次的功能. 这次我们创建一个 DeepQNetwork 的 class, 以及他神经网络部分的功能. 下次再说强化学习的更新部分.

class DeepQNetwork:
    # 建立神经网络
    def _build_net(self):

创建两个网络

两个神经网络是为了固定住一个神经网络 (target_net) 的参数, target_neteval_net 的一个历史版本, 拥有 eval_net 很久之前的一组参数, 而且这组参数被固定一段时间, 然后再被 eval_net 的新参数所替换. 而 eval_net 是不断在被提升的, 所以是一个可以被训练的网络 trainable=True. 而 target_nettrainable=False.

class DeepQNetwork:
    def _build_net(self):
        # -------------- 创建 eval 神经网络, 及时提升参数 --------------
        self.s = tf.placeholder(tf.float32, [None, self.n_features], name='s')  # 用来接收 observation
        self.q_target = tf.placeholder(tf.float32, [None, self.n_actions], name='Q_target') # 用来接收 q_target 的值, 这个之后会通过计算得到
        with tf.variable_scope('eval_net'):
            # c_names(collections_names) 是在更新 target_net 参数时会用到
            c_names, n_l1, w_initializer, b_initializer = \
                ['eval_net_params', tf.GraphKeys.GLOBAL_VARIABLES], 10, \
                tf.random_normal_initializer(0., 0.3), tf.constant_initializer(0.1)  # config of layers

            # eval_net 的第一层. collections 是在更新 target_net 参数时会用到
            with tf.variable_scope('l1'):
                w1 = tf.get_variable('w1', [self.n_features, n_l1], initializer=w_initializer, collections=c_names)
                b1 = tf.get_variable('b1', [1, n_l1], initializer=b_initializer, collections=c_names)
                l1 = tf.nn.relu(tf.matmul(self.s, w1) + b1)

            # eval_net 的第二层. collections 是在更新 target_net 参数时会用到
            with tf.variable_scope('l2'):
                w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names)
                b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names)
                self.q_eval = tf.matmul(l1, w2) + b2

        with tf.variable_scope('loss'): # 求误差
            self.loss = tf.reduce_mean(tf.squared_difference(self.q_target, self.q_eval))
        with tf.variable_scope('train'):    # 梯度下降
            self._train_op = tf.train.RMSPropOptimizer(self.lr).minimize(self.loss)

        # ---------------- 创建 target 神经网络, 提供 target Q ---------------------
        self.s_ = tf.placeholder(tf.float32, [None, self.n_features], name='s_')    # 接收下个 observation
        with tf.variable_scope('target_net'):
            # c_names(collections_names) 是在更新 target_net 参数时会用到
            c_names = ['target_net_params', tf.GraphKeys.GLOBAL_VARIABLES]

            # target_net 的第一层. collections 是在更新 target_net 参数时会用到
            with tf.variable_scope('l1'):
                w1 = tf.get_variable('w1', [self.n_features, n_l1], initializer=w_initializer, collections=c_names)
                b1 = tf.get_variable('b1', [1, n_l1], initializer=b_initializer, collections=c_names)
                l1 = tf.nn.relu(tf.matmul(self.s_, w1) + b1)

            # target_net 的第二层. collections 是在更新 target_net 参数时会用到
            with tf.variable_scope('l2'):
                w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names)
                b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names)
                self.q_next = tf.matmul(l1, w2) + b2

如果想一次性看到全部代码, 请去我的 Github

分享到: Facebook 微博 微信 Twitter
如果你觉得这篇文章或视频对你的学习很有帮助, 请你也分享它, 让它能再次帮助到更多的需要学习的人. UnityTutorial没有正式的经济来源, 如果你也想支持 UnityTutorial 并看到更好的教学内容, 赞助他一点点, 作为鼓励他继续开源的动力.

支持 让教学变得更优秀