视频源:

Policy Gradients 算法更新 (Tensorflow)

作者: UnityTutorial 编辑: UnityTutorial 2017-03-21

学习资料:

要点

Policy gradient 是 RL 中另外一个大家族, 他不像 Value-based 方法 (Q learning, Sarsa), 但他也要接受环境信息 (observation), 不同的是他要输出不是 action 的 value, 而是具体的那一个 action, 这样 policy gradient 就跳过了 value 这个阶段. 而且个人认为 Policy gradient 最大的一个优势是: 输出的这个 action 可以是一个连续的值, 之前我们说到的 value-based 方法输出的都是不连续的值, 然后再选择值最大的 action. 而 policy gradient 可以在一个连续分布上选取 action.

算法

我们介绍的 policy gradient 的第一个算法是一种基于 整条回合数据 的更新, 也叫 REINFORCE 方法. 这种方法是 policy gradient 的最基本方法, 有了这个的基础, 我们再来做更高级的.

Policy Gradients 算法更新 (Tensorflow)

log(Policy(s,a))*V 中的 log(Policy(s,a)) 表示在 状态 s 对所选动作 a 的吃惊度, 如果 Policy(s,a) 概率越小, 反向的 log(Policy(s,a)) (即 -log(P)) 反而越大. 如果在 Policy(s,a) 很小的情况下, 拿到了一个 大的 R, 也就是 大的 V, 那 -log(Policy(s, a))*V 就更大, 表示更吃惊, (我选了一个不常选的动作, 却发现原来它能得到了一个好的 reward, 那我就得对我这次的参数进行一个大幅修改). 这就是 log(Policy)*V 的物理意义啦.

算法代码形式

和以前类似, 我们先定义主更新的循环, 然后下节内容讲如何用 Tensorflow 定义 PolicyGradient() 的算法:

import gym
from RL_brain import PolicyGradient
import matplotlib.pyplot as plt

RENDER = False  # 在屏幕上显示模拟窗口会拖慢运行速度, 我们等计算机学得差不多了再显示模拟
DISPLAY_REWARD_THRESHOLD = 400  # 当 回合总 reward 大于 400 时显示模拟窗口

env = gym.make('CartPole-v0')   # CartPole 这个模拟
env = env.unwrapped     # 取消限制
env.seed(1)     # 普通的 Policy gradient 方法, 使得回合的 variance 比较大, 所以我们选了一个好点的随机种子

print(env.action_space)     # 显示可用 action
print(env.observation_space)    # 显示可用 state 的 observation
print(env.observation_space.high)   # 显示 observation 最高值
print(env.observation_space.low)    # 显示 observation 最低值

# 定义
RL = PolicyGradient(
    n_actions=env.action_space.n,
    n_features=env.observation_space.shape[0],
    learning_rate=0.02,
    reward_decay=0.99,   # gamma
    # output_graph=True,    # 输出 tensorboard 文件
)

主循环在这, 这节介绍的内容是让计算机跑完一整个回合才更新一次. 之前的 Qleanring 等在回合中每一步都可以更新参数.

for i_episode in range(3000):

    observation = env.reset()

    while True:
        if RENDER: env.render()

        action = RL.choose_action(observation)

        observation_, reward, done, info = env.step(action)

        RL.store_transition(observation, action, reward)    # 存储这一回合的 transition

        if done:
            ep_rs_sum = sum(RL.ep_rs)

            if 'running_reward' not in globals():
                running_reward = ep_rs_sum
            else:
                running_reward = running_reward * 0.99 + ep_rs_sum * 0.01
            if running_reward > DISPLAY_REWARD_THRESHOLD: RENDER = True     # 判断是否显示模拟
            print("episode:", i_episode, "  reward:", int(running_reward))

            vt = RL.learn() # 学习, 输出 vt, 我们下节课讲这个 vt 的作用

            if i_episode == 0:
                plt.plot(vt)    # plot 这个回合的 vt
                plt.xlabel('episode steps')
                plt.ylabel('normalized state-action value')
                plt.show()
            break

        observation = observation_

另外一个 ‘Mountain Car’ 模拟代码在我的 Github 中, 和上面那些代码类似, 只改动了一些大写的参数.

分享到: Facebook 微博 微信 Twitter
如果你觉得这篇文章或视频对你的学习很有帮助, 请你也分享它, 让它能再次帮助到更多的需要学习的人. UnityTutorial没有正式的经济来源, 如果你也想支持 UnityTutorial 并看到更好的教学内容, 赞助他一点点, 作为鼓励他继续开源的动力.

支持 让教学变得更优秀